By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Latest World News UpdateLatest World News UpdateLatest World News Update
  • Home
  • Business
  • National
  • Entertainment
  • Sports
  • Health
  • Science
  • Tech
  • World
  • Marathi
  • Hindi
  • Gujarati
  • Videos
  • Press Release
    • Press Release
    • Press Release Distribution Packages
Reading: Study finds how bacterial vaccine demonstrates potential as treatment for cancer immunotherapy – World News Network
Share
Notification Show More
Font ResizerAa
Latest World News UpdateLatest World News Update
Font ResizerAa
  • Home
  • Business
  • National
  • Entertainment
  • Sports
  • Health
  • Science
  • Tech
  • World
  • Marathi
  • Hindi
  • Gujarati
  • Videos
  • Press Release
    • Press Release
    • Press Release Distribution Packages
Follow US
  • Advertise
© 2022 Foxiz News Network. Ruby Design Company. All Rights Reserved.
Latest World News Update > Blog > Science > Study finds how bacterial vaccine demonstrates potential as treatment for cancer immunotherapy – World News Network
Science

Study finds how bacterial vaccine demonstrates potential as treatment for cancer immunotherapy – World News Network

worldnewsnetwork
Last updated: October 17, 2024 12:00 am
worldnewsnetwork 7 months ago
Share
SHARE

New York [US], October 17(ANI): Columbia researchers developed probiotic bacteria that train the immune system to eliminate cancer cells, paving the way for a new class of cancer vaccinations that take advantage of bacteria’s innate tumour-targeting abilities. These microbial cancer vaccines can be tailored to each person’s specific original tumour and metastases, perhaps preventing future recurrences.
In mice models of advanced colorectal cancer and melanoma, the bacterial vaccine stimulated the immune system, causing primary and metastatic malignancies to shrink – or in many cases disappear entirely. All while leaving healthy body parts alone.
The findings were published in Nature.
The bacterial vaccine proved to be particularly more efficacious than peptide-based therapeutic cancer vaccines that have been used in numerous previous cancer clinical trials.
“The important advantage of our system is its unique ability to coordinately restructure and activate all arms of the immune system to induce a productive antitumor immune response. We believe this is why the system works so well in advanced solid tumor models which have been particularly difficult to treat with other immunotherapies,” says Andrew Redenti, an MD/PhD student at Columbia University’s Vagelos College of Physicians and Surgeons who helped lead the study.
“The net effect is that the bacterial vaccine is able to control or eliminate the growth of advanced primary or metastatic tumors and extend survival in mouse models,” says Jongwon Im, a PhD student at Columbia University who helped lead bacterial engineering aspects of the study.
The bacterial vaccine is personalized for each tumor. “Every cancer is unique – tumor cells harbor distinct genetic mutations that distinguish them from normal healthy cells. By programming bacteria that direct the immune system to target these cancer-specific mutations, we can engineer more effective therapies that stimulate a patient’s own immune system to detect and kill their cancer cells,” says Nicholas Arpaia, PhD, Associate Professor of Microbiology & Immunology in the Columbia University’s Vagelos College of Physicians and Surgeons who directed the research with Tal Danino, PhD, Associate Professor of Biomedical Engineering at Columbia’s School of Engineering.
“As we continue to integrate additional safety optimizations through further genetic programming, we are getting closer to the point of testing this therapy in patients,” he added.
Bacteria have been utilized in the treatment of cancer since the late 19th century, when Dr. William Coley, who was a surgeon at New York Hospital, observed tumor regression in a subset of patients with inoperable tumors injected with bacteria. Bacteria are still employed as a therapeutic today in patients with early-stage bladder cancer. Researchers now know that some bacteria can naturally migrate to and colonize tumors, where they can thrive in the often oxygen-deprived environment and locally provoke an immune response.
But used this way, bacteria do not usually precisely control or direct the immune response to attack the cancer. “These qualities alone don’t typically give bacteria enough power to stimulate immune responses capable of destroying a tumor, but they’re a good starting point for building a new domain of cancer therapeutics,” said Nicholas Arpaia, PhD.
The new system starts with a probiotic strain of E. coli bacteria. The researchers then made multiple genetic modifications to precisely control the way in which the bacteria interact with and educate the immune system to induce tumor killing.
The engineered bacteria encode protein targets – called neoantigens – that are specific to the cancer being treated. These bacterially-delivered neoantigens train the immune system to target and attack cancer cells that express the same proteins. Neoantigens are used as tumor targets so that normal cells, which lack these cancer-marking proteins, are left alone. Due to the nature of the bacterial system and additional genetic modifications engineered by the scientists, these bacterial cancer therapies also simultaneously overcome immunosuppressive mechanisms tumors use to block the immune system.
These genetic modifications are also designed to block the bacteria’s innate ability to evade immune attacks against themselves. As a safety measure, this means the engineered bacteria can be easily recognized and eliminated by the immune system and are quickly cleared from the body if they do not find the tumor.
When tested in mice, the researchers found that these intricately programmed bacterial cancer vaccines recruit a wide array of immune cells that attack tumor cells, all the while preventing responses that would normally suppress tumor-directed immune attacks.
The bacterial vaccine also reduced the growth of cancer when administered to mice before they developed tumors, and prevented regrowth of the same tumors in mice that had been cured, suggesting the vaccine may have the ability to prevent cancer from returning in patients who’ve experienced remission.
In people, the first step in creating these microbial vaccines would be to sequence a patient’s cancer and identify its unique neoantigens using bioinformatics. Next, the bacteria would be engineered to produce large quantities of the identified neoantigens, as well as other immunomodulatory factors. When infused into the patient whose tumors are to be treated, the bacteria would head to the tumors, make themselves at home, and steadily produce and deliver their payload of engineered “medicines.”
Once activated by the bacterial vaccine, the immune system would be prompted to eliminate cancer cells that have spread throughout the body and prevent further metastatic development.
Since each tumor has its own set of neoantigens, the immunotherapy will be custom-made for each patient. “The time to treatment will first depend on how long it takes to sequence the tumor. Then we just need to make the bacterial strains, which can be quite fast. Bacteria can be simpler to manufacture than some other vaccine platforms,” Danino says.
The bacteria are also designed to counteract cancer’s ability to rapidly mutate and evade treatment. “Because our platform allows us to deliver so many different neoantigens, it theoretically becomes difficult for tumor cells to lose all those targets at once and avoid the immune response,” says Arpaia.
The researchers think their approach may succeed where earlier cancer vaccines have not. In the latter, while immune responses against tumor neoantigens may be induced, direct modulation of the immunosuppressive tumor environment is not accomplished to such a degree.
Arpaia adds, “Bacteria allow delivery of a higher concentration of drugs than can be tolerated when these compounds are delivered systemically throughout the entire body. Here, we can confine delivery directly to the tumor and locally modulate how we’re stimulating the immune system.” (ANI)

Contents
WORLD MEDIA NETWORKPRESS RELEASE DISTRIBUTIONPress releases distribution in 166 countriesPress releases in all languagesPress releases in Indian LanguagesIndia PackagesEurope PackagesAsia PackagesMiddle East & Africa PackagesSouth America PackagesUSA & Canada PackagesOceania PackagesCis Countries PackagesWorld Packages

Disclaimer: This story is auto-generated from a syndicated feed of ANI; only the image & headline may have been reworked by News Services Division of World News Network Inc Ltd and Palghar News and Pune News and World News

sponsored by

WORLD MEDIA NETWORK


PRESS RELEASE DISTRIBUTION

Press releases distribution in 166 countries

EUROPE UK, INDIA, MIDDLE EAST, AFRICA, FRANCE, NETHERLANDS, BELGIUM, ITALY, SPAIN, GERMANY, AUSTRIA, SWITZERLAND, SOUTHEAST ASIA, JAPAN, SOUTH KOREA, GREATER CHINA, VIETNAM, THAILAND, INDONESIA, MALAYSIA, SOUTH AMERICA, RUSSIA, CIS COUNTRIES, AUSTRALIA, NEW ZEALAND AND MORE

Press releases in all languages

ENGLISH, GERMAN, DUTCH, FRENCH, PORTUGUESE, ARABIC, JAPANESE, and KOREAN CHINESE, VIETNAMESE, INDONESIAN, THAI, MALAY, RUSSIAN. ITALIAN, SPANISH AND AFRICAN LANGUAGES

Press releases in Indian Languages

HINDI, MARATHI, GUJARATI, TAMIL, TELUGU, BENGALI, KANNADA, ORIYA, PUNJABI, URDU, MALAYALAM
For more details and packages

Email - support@worldmedianetwork.uk
Website - worldmedianetwork.uk

India Packages

Read More

Europe Packages

Read More

Asia Packages

Read More

Middle East & Africa Packages

Read More

South America Packages

Read More

USA & Canada Packages

Read More

Oceania Packages

Read More

Cis Countries Packages

Read More

World Packages

Read More
sponsored by

You Might Also Like

Amphibians bounce-back from Earth’s greatest mass extinction: Study – World News Network

Scientists use AI to better understand nanoparticles: Study – World News Network

Scientists use AI to better understand nanoparticles: Study – World News Network

Scientists use AI to better understand nanoparticles: Study – World News Network

Scientists use AI to better understand nanoparticles: Study – World News Network

Share This Article
Facebook Twitter Email Print
Previous Article Abu Dhabi T10: Defending Champions New York Strikers retain Pollard, Amir, Narine for upcoming season – World News Network
Next Article JEE Main 2025: NTA announces changes in exam pattern, scraps optional Questions in Section B – World News Network
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

235.3kFollowersLike
69.1kFollowersFollow
11.6kFollowersPin
56.4kFollowersFollow
136kSubscribersSubscribe
4.4kFollowersFollow
- Advertisement -

Latest News

Samsung Galaxy S25 Edge Features New Corning® Gorilla® Glass Ceramic 2 for Enhanced Durability – World News Network
Business 17 hours ago
Ideal Eyes Interior Sets New Standard in Luxury Design with 430+ Projects Across Eastern India – World News Network
Business 17 hours ago
Group 108 Commands Spotlight at PRC 2025 with Groundbreaking Dual Project Showcase and Expanding Retail Presence – World News Network
Business 17 hours ago
Shopping Without Searching: A Shift Toward Conversational Commerce – World News Network
Business 17 hours ago

Sports

IPL 2025: PBKS,DC in spot of bother for playoffs qualification – World News Network
Sports
“Priyansh Arya is one of the finds of the tournament”: Ricky Ponting on PBKS batter – World News Network
Sports

Popular Category

  • Business
  • Entertainment
  • Health
  • National
  • Videos
  • Gujarati

Popular Category

  • Hindi
  • Lifestyle
  • Marathi
  • National
  • Science
  • Sports
  • Tech
  • World

Entertainment

Poet Kumar Vishwas urges news channels, broadcasters to not run “unverified”, “unauthorised” news amid rising India-Pakistan tensions – World News Network
Entertainment
Poet Kumar Vishwas urges news channels, broadcasters to not run “unverified”, “unauthorised” news amid rising India-Pakistan tensions – World News Network
Entertainment
Copyright © 2023 World News Network. All Rights Reserved.
Join Us!

Subscribe to our newsletter and never miss our latest news, podcasts etc..

[mc4wp_form]
Zero spam, Unsubscribe at any time.
Welcome Back!

Sign in to your account

Lost your password?